How Choose Best Solar Panel Type ?
MONO vs Poly vs Thin-film vs etc...
Installing a home solar energy system is a smart financial investment for many homeowners. As you evaluate offers from solar companies, there are many different factors to consider – the equipment that you choose for your system, your financing options, and the installer that you select all have an impact on your solar savings. This guide will help you evaluate the different solar panels and inverters available so that you can find the best equipment for your home.There are two main components to a grid-connected solar energy system: the solar panels themselves, which create electricity from sunlight, and the inverter, which converts the electricity into a form you can use in your home. Some also include a monitoring system, which allows you to see how much power you’re creating and using. And while solar batteries haven’t yet hit the mainstream, the announcement of Tesla’s Powerwall battery and other technologies are making it possible for homeowners to consider incorporating a battery into their system.
You are thinking about buying solar panels, but got confused about which type to go for? You’re at the right place. There’s a myriad of variables that you should take into account when you are buying a solar photovoltaic (PV) system – our job here at Energy Informative is to help you sort through them!
In this article, you will learn everything you need to know about the different types of solar panels for home use (mono-, polycrystalline and thin film).
Let’s start with the different types of solar panels currently on the market, list their benefits and downsides, and then look at a few typical scenarios where certain types would be the better than others (hopefully one of them resonates with you).
- Crystalline Silicon
- Monocrystalline
- Polycrystalline
- Thin-Film Solar Panels
- Building Integrated Photovoltaics
- Best Solar Panel Type for Home Use
Crystalline Silicon (c-Si)
Almost 90% of the World’s photovoltaics today are based on some variation of silicon.[1] In 2011, about 95% of all shipments by U.S. manufacturers to the residential sector were crystalline silicon solar panels.[2]
The silicon used in PV takes many forms. The main difference is the purity of the silicon.
But what does silicon purity really mean? The more perfectly aligned the silicon molecules are, the better the solar cell will be at converting solar energy (sunlight) into electricity (the photoelectric effect).
The efficiency of solar panels goes hand in hand with purity, but the processes used to enhance the purity of silicon are expensive. Efficiency should not be your primary concern. As you will later discover, cost-and space-efficiency are the determining factors for most people.
Monocrystalline Silicon Solar Cells
Solar cells made of monocrystalline silicon (mono-Si), also called single-crystalline silicon (single-crystal-Si), are quite easily recognizable by an external even coloring and uniform look, indicating high-purity silicon, as you can see on the picture below.
Monocrystalline solar cells are made out of silicon ingots, which are cylindrical in shape. To optimize performance and lower costs of a single monocrystalline solar cell, four sides are cut out of the cylindrical ingots to make silicon wafers, which is what gives monocrystalline solar panels their characteristic look.
A good way to separate mono- and polycrystalline solar panels is that polycrystalline solar cells look perfectly rectangular with no rounded edges.
Advantages
- Monocrystalline solar panels have the highest efficiency rates since they are made out of the highest-grade silicon. The efficiency rates of monocrystalline solar panels are typically 15-20%. SunPower produces the highest efficiency solar panels on the U.S. market today. Their E20 series provide panel conversion efficiencies of up to 20.1%.[3] Update (April, 2013): SunPower has now released the X-series at a record-breaking efficiency of 21.5%. [7]
- Monocrystalline silicon solar panels are space-efficient. Since these solar panels yield the highest power outputs, they also require the least amount of space compared to any other types. Monocrystalline solar panels produce up to four times the amount of electricity as thin-film solar panels.
- Monocrystalline solar panels live the longest. Most solar panel manufacturers put a 25-year warranty on their monocrystalline solar panels.
- Tend to perform better than similarly rated polycrystalline solar panels at low-light conditions.
Disadvantages
- Monocrystalline solar panels are the most expensive. From a financial standpoint, a solar panel that is made of polycrystalline silicon (and in some cases thin-film) can be a better choice for some homeowners.
- If the solar panel is partially covered with shade, dirt or snow, the entire circuit can break down. Consider getting micro-inverteV BJrs instead of central string inverters if you think coverage will be a problem. Micro-inverters will make sure that not the entire solar array is affected by shading issues with only one of the solar panels.
- The Czochralski process is used to produce monocrystalline silicon. It results in large cylindrical ingots. Four sides are cut out of the ingots to make silicon wafers. A significant amount of the original silicon ends up as waste.
- Monocrystalline solar panels tend to be more efficient in warm weather. Performance suffers as temperature goes up, but less so than polycrystalline solar panels. For most homeowners temperature is not a concern.
Polycrystalline Silicon Solar Cells
The first solar panels based on polycrystalline silicon, which also is known as polysilicon (p-Si) and multi-crystalline silicon (mc-Si), were introduced to the market in 1981. Unlike monocrystalline-based solar panels, polycrystalline solar panels do not require the Czochralski process. Raw silicon is melted and poured into a square mold, which is cooled and cut into perfectly square wafers.Advantages
- The process used to make polycrystalline silicon is simpler and cost less. The amount of waste silicon is less compared to monocrystalline.
- Polycrystalline solar panels tend to have slightly lower heat tolerance than monocrystalline solar panels. This technically means that they perform slightly worse than monocrystalline solar panels in high temperatures. Heat can affect the performance of solar panels and shorten their lifespans. However, this effect is minor, and most homeowners do not need to take it into account.
Disadvantages
- The efficiency of polycrystalline-based solar panels is typically 13-16%. Because of lower silicon purity, polycrystalline solar panels are not quite as efficient as monocrystalline solar panels.
- Lower space-efficiency. You generally need to cover a larger surface to output the same electrical power as you would with a solar panel made of monocrystalline silicon. However, this does not mean every monocrystalline solar panel perform better than those based on polycrystalline silicon.
- Monocrystalline and thin-film solar panels tend to be more aesthetically pleasing since they have a more uniform look compared to the speckled blue color of polycrystalline silicon.
Thin-Film Solar Cells (TFSC)
Depositing one or several thin layers of photovoltaic material onto a substrate is the basic gist of how thin-film solar cells are manufactured. They are also known as thin-film photovoltaic cells (TFPV). Depending on the technology, thin-film module prototypes have reached efficiencies between 7–13% and production modules operate at about 9%. Future module efficiencies are expected to climb close to the about 10–16%.Advantages
Mass-production is simple. This makes them and potentially cheaper to manufacture than crystalline-based solar cells.
Their homogenous appearance makes them look more appealing.
Can be made flexible, which opens up many new potential applications.
High temperatures and shading have less impact on solar panel performance.
In situations where space is not an issue, thin-film solar panels can make sense.
Disdvantages
Thin-film solar panels are in general not very useful for in most residential situations.They are cheap, but they also require a lot of space. SunPower`s monocrystalline solar panels produce up to four times the amount of electricity as thin-film solar panels for the same amount of space.[3]
Low space-efficiency also means that the costs of PV-equipment (e.g. support structures and cables) will increase.
Thin-film solar panels tend to degrade faster than mono- and polycrystalline solar panels, which is why they typically come with a shorter warranty.
Building-Integrated Photovoltaics (BIPV)
Lastly, we`ll briefly touch on the subject of building integrated photovoltaics. Rather than an individual type of solar cell technology, building integrated photovoltaics have several subtypes (or different methods of integration), which can be based on both crystalline-based and thin-film solar cells.
Building integrated photovoltaics can be facades, roofs, windows, walls and many other things that is combined with photovoltaic material. If you have the extra money and want to seemlessly integrate photovoltaics with the rest of your home, you should look up building integrated photovoltaics. For most homeowners it`s simply way too expensive.
Advantage :
Glass Glass Module having one of the prominent applications as a BIPV (Building Integrated Photovoltaic Module) have the following advantages :
a) Transparency of Solar Modules lets in natural light along with producing electricity of solar cells.Ideal for roofs
b) With the advent of almost transparent solar cells, Glass Glass modules can also replace window panes on the south side of building (above equator) and north face of building (below equator)
c) Can be customised for size depending on the area of the roof/glass pane
d) An architects delight !!!. (Yes indeed because they are aesthetically appealing compared to crystalline modules.
e) Reliability and durability wise better and thus increased warranty period.
f) Increased cost per watt as compared to crystalline modules is a disadvantage
g) Performance at higher temperatures has a higher degradation as compared to crystalline modules is a disadvantage.
Best Solar Panel Type for Home Use
Having your particular situation evaluated by an expert would be the best way to find out what solar panel type would be best for your household. Here are some of the typical scenarios we see:
Which One Should I Choose?
The answer depends on your project’s specification. Poly modules, for instance, are ideal for projects with large roof or ground space. They are also great for consumers on a tight budget who are looking for ways to keep installation costs to a minimum.Limited Space
For those who don’t have enough space for thin-film solar panels (the majority of us), or if you want to limit the amount of space their PV-system takes up, crystalline-based solar panels are your best choice (and they would likely be the your best choice even if you had the extra space). There are not a whole lot of solar installers and providers that offer thin-film solar panels for homeowners at this point.
You will have a choice of different solar panel sizes. The 180, 200 and 220-watt rated solar panels are usually physically the same size. They are manufactured exactly the same way, but under- or overperform when tested, hence ending up in different categories for power output. If size is important, you should go for the highest rated power output for a particular physical size.
Both mono- and polycrystalline solar panels are good choices and offer similar advantages. Even though polycrystalline solar panels tend to be less space-efficient and monocrystalline solar panels tend to produce more electrical power, this is not always the case. It would be nearly impossible to recommend one or the other by not examining the solar panels and your situation closer.
Monocrystalline solar panels are slightly more expensive, but also slightly more space-efficient. If you had one polycrystalline and one monocrystalline solar panel, both rated 220-watt, they would generate the same amount of electricity, but the one made of monocrystalline silicon would take up less space.
Lowest Costs
If you want the lowest costs per rated power, or in other words, pay as little as possible for a certain amount of electricity, you should investigate if thin-film solar panels could in fact be a better choice than mono- or polycrystalline solar panels.
Customize
The term building-applied photovoltaics (BAPV) is sometimes used to refer to
If u have some project on villa ,airport and some Landmark building get demand on beautiful and translucent .We choose double glass panel .
Now have you get any idea to choose best type panel u need ?
SOLAR FAN
photovoltaics that are a retrofit – integrated into the building after construction is complete. Most building-integrated installations are actually BAPV. Some manufacturers and builders differentiate new construction BIPV from BAPV.
If you are ready to take a step towards going solar, contact us and we will guide you through the process.
CowinSOLAR/Yingli SOLAR
Shop platform:
Made In China : http://szyinglisolar.en.made-in-china.com
Alibaba : https://szyinglisolar.en.alibaba.com
Amazon : cowinsolar
SNS:
Twitter : https://twitter.com/Cowinsolar
Facebook: https://www.facebook.com/szcowinsolar
Linkindlin: cowin solar
I want say that this article is very nice and very informative article.I will make sure to be reading your blog more.
回复删除Cost Of Installing Solar Panels For Home
Solar Las Vegas
Residential Solar Panel Systems